什么是“数字孪生”?这个工厂给出了一个完美的解释!
上周,有一个B站UP主火了,他把自己的自行车改造成了无人驾驶的“真·自行车”,给自行车装上了三个电机、一个激光雷达、一个AI运算核心等零件。
这些工作的第一步,是他把车的尺寸、结构精细地输入电脑,做出了一个类似CAD的结构图, 基于这辆虚拟的自行车,他定制加工了组件;随后,这辆数字车被输入游戏引擎,引入重力等因素,就可以用来初步调整各项参数,让只有两个轮子的自行车能稳稳地站在地上。
他把这辆软件中的自行车,称作现实中被改装的那辆车的“数字孪生”。
杨景诒、刘冬宇 | 作者
刘冬宇 | 编辑
放大灯团队 | 策划

从《模拟人生》到“数字孪生”
这些游戏,都在尝试着在虚拟空间里创造某种真实性,这是一种“仿真”——而仿真的潜力,远不止于满足娱乐需求,在工业生产中更需要“模拟经营”,用仿真工具来低成本地验证某项设计是否有效,或者提前发现致命错误。
为了更容易理解,我们也可以把数字孪生叫做数字镜像,或者数字化映射。它利用3D建模、传感器、物联网等技术手段,在线上复制一个与现实几乎一致的“数字体”。这个数字体能够通过大量数据,记录现实中的一举一动,“投射”到系统中。
用人话总结一下,仿真是基于现实的规律,创造出虚拟的物体,而数字孪生,则是把真实世界的真实事物,可以是物体,也可以是某种过程,经过精确测量后,在虚拟空间创造出的可以反映真实情况的数码复制体。
共同之处是,他们都能成为人们的好帮手。
2009年,美国国防部提出“机身数字孪生”的概念,将数字孪生用于航空航天飞行器的维护。另外,通过飞行器身上的传感器,相关实验室还能收集到飞行器的飞行数据,用于后续研究[2]。2012年,NASA发布了一项“建模、仿真、信息技术和处理”路线图,数字孪生这才被更多人了解。
此后数年,数字孪生一直被美国空军所看好。
但它进入民用生产领域的历史并不长,直到2015年5月,通用电气推出数字化风电场,才把数字孪生技术推向商用。2017年,更多国际巨头先后涉足数字孪生技术:
- 西门子发布了数字孪生体应用模型;
- 美国参数技术公司推出基于数字孪生技术的IoT解决方案;
- 达索、通用电气等企业也开始宣传数字孪生技术。
2016~2020年,数字孪生连续四年入选分析公司Gartner的“十大战略科技发展趋势”。Gartner 的一份2019年的报告预测,到2021年,全球将有一半的大型工业企业,在生产中使用数字孪生技术,而这能使他们的生产效率提高10%。[6]
咨询公司MarketsandMarkets的数据则显示,全球数字孪生市场将在未来快速增长,规模从2019年的38亿美元,增长至2025年的358亿美元。此外,亚太地区市场规模增速也会远超其他地区。[7]


跑在前面的竟是这家老国企

一汽红旗“繁荣工厂”
汽车工业,人类制造业的明珠之一。它是一种典型的离散制造:产品的生产过程通常被分解为很多零件,在不同的工厂甚至不同的企业里生产,生产过程更为复杂多变。而与之相对的则是流程制造,例如钢铁、水泥、服装等工厂,用一条生产线就将原料制成成品。

红旗繁荣工厂车间实拍
把工厂搬到虚拟空间里,有什么用?
对于车间的管理人员或者工程人员来说,偌大工厂的管理和生产安排变得没那么困难了。一汽新能源汽车工厂占地面积78万平方米,什么概念?相当于105个足球场那么大。
好在,数字孪生虚拟出来的工厂,与真实的生产环境1:1对应,人在办公室,就能看到生产现场一举一动。在数字孪生的应用中,管理人员能够看到每一个车间的工作情况,通过搜索定位、“拖拉拽”等简单交互,就能定位到生产线的每一个细节。
此外,数字孪生也降低了工人看懂数据的门槛。“它不需要你有什么CAD的经验、也不需要有太多专业知识。” 阿里云工业大脑数字孪生产品经理伍剑向放大灯介绍,就算拧螺丝的工人也看得懂。
除了实时性,“回放”也是数字孪生的重要功能。生产监管因此变得一目了然:借助数字孪生,工程师们可以快速追溯生产数据,甚至细化到当时螺丝的力矩,更容易分析故障的原因;在车辆交付给消费者后, “回放”仍然可以在售后服务中发挥作用。
但想让这一切科幻感的事情在工厂里发生,并不容易。传感器、通信模组、数采软件、算法等软硬件,它们是数字孪生的基础。
其次是三维技术。孪生世界要与物理世界完成“一一对应”,就意味着工程师要用大量三维技术还原工厂设备。“数字孪生”成为工业设计大奖的常客,就不奇怪了。(去年,阿里云的工业大脑数字孪生刚刚拿了中国设计智造大奖“金奖”。)
搭建好的三维模型,还要接入工厂的生产数据,才能把它们驱动起来。换句话说,这些三维模型不是用来观赏的,它要实实在在反映、指导生产动作。这需要特别精准、高性能的数据采集和处理技术。
如果回到原点,第一个环节就是对数据采集与监控系统的改造,排头兵就是异常复杂的连接设备传感器和PLC可编程逻辑控制器。
随着工厂自动化设备越来越多,设备接入点位和十年前相比,可能增加了二、三十倍。这些数据包括但不仅限于:
- 工厂的物流、仓储、内部控制环节产生的管理类数据;
- 温湿度计、机械臂等IoT类传感器产生的数据;
- 在进行安全管理、质量检查时,工厂还会借助视频手段,这些视频又是一类数据。
对行业来说,这是个新记录。
当然,对车企来说,数采的手段并不重要,重要的是数据拿到手之后,如何用起来。“数据采集后,关键在于对数据治理的环节,这是核心技术。”一汽集团工程与生产物流部总装工艺部总监、一汽红旗新能源工厂项目负责人董玮在先前的采访中曾经表示:“这些核心技术我们肯定希望掌握在自己的手里,来保证数据模型搭建的自主性。”

数字工厂中的数据流向。
图丨放大灯团队据采访整理

1分钟生产1台车,机器人绝不罢工
放大灯团队据采访信息整理
IoT数据采集,当然能测出拧这颗螺丝用了多大力、拧了多少度数——但这还不够,数据指标不能解决一切问题,因为每颗螺丝、每块钢板都存在微小的差异。工厂是个复杂的系统,综合考虑这些复杂的因素,就需要建立算法模型,对“拧好螺丝”这件小事作出判断。
这只是汽车数字工厂智能算法的一个缩影。类似的算法,被应用到冲压、焊接、涂装、总装、电池电驱各个关键环节中,即时对生产质量给出判断。
另外一类算法,则是对生产设备本身的预测性维护。
高速生产的流水线中,每一个环节掉链子,都会打乱整个生产节奏。
“繁荣工厂”设计的生产节拍是60JPH(jobs per hour),即每小时完成60个作业、每分钟就有一辆汽车整装下线。如果一年停工10次,每次停工3小时,就会减少1800台产量,实际损失上亿。提前发现问题、集中处置,减少产线停工的发生,正是这套预测性维护算法带来的直接提升。

红旗繁荣工厂车间实拍
下个时代的“T型车”,无法简单地从一堆机械臂中诞生,智能制造的浪潮已经到来。
版权声明:本文采用知识共享 署名4.0国际许可协议 [BY-NC-SA] 进行授权
文章名称:什么是“数字孪生”?这个工厂给出了一个完美的解释!
文章链接:https://cimzj.com/1695.html 本站提供的一切软件、教程和内容信息仅限用于学习和研究目的;不得将上述内容用于商业或者非法用途,否则,一切后果请用户自负。 本站信息来自网络,版权争议与本站无关。您必须在下载后的24个小时之内,从您的电脑或手机中彻底删除上述内容。

共有 0 条评论